The Gemini Planet Imager is the next generation adaptive optics instrument being built for the Gemini Telescope. The goal is to image extrasolar planets orbiting nearby stars. In 2011, the GPI Exoplanet Survey team was selected to carry out an 890-hour survey campaign from 2014 to 2016 to search and characterize exoplanets around ~600 stars.

GPI has been built by a consortium of U.S. and Canadian institutions, funded by the Gemini Observatory, which is an international partnership comprising the U.S.A., U.K., Canada, Australia, Argentina, Brazil & Chile. The GPIES campaign is partially funded by NSF, NASA, the University of California and the Laboratory Directed Research and Development funding at the Lawrence LIvermore National Laboratory.

After more than 5 years of development (preliminary design review in May 2007 and critical design review (CDR) in May 2008, delta CDR  in March, 2009, procurement and fabrication phase until 2011), one year of integration at UCSC LAO in 2013, the instrument was shipped to Chile in August 2013. The first light of the instrument was conducted in November 2013 and Science Operation started in 2014. Since November 2014, our team initiated the GPI Exoplanet Survey to image and characterize Young Jupiter-like exoplanets.

Initial deployment at Gemini South, a telescope with an 8-meter diameter mirror located on Cerro Pachon (Chilean Andes) at an altitude of 2,715 meters (9,000 feet). Later, GPI may also be used at the twin facility Gemini North, which is located on Mauna Kea, Hawaii.

GPI will detect DIRECTLY the light from an extrasolar planet to determine its mass and composition, with an ultimate goal of determining the nature of our own planetary system. 3,272  extrasolar planets are known today (June 4 2016), but mostly through transit events (79%) that measure the planet’s size and orbit and direct Doppler (18%) technique that indicate the planet’s mass and orbit. If we can directly pick out a planet from the star’s glare, we can use spectroscopy to measure the planet’s size, temperature, gravity, and even the composition of its atmosphere. By targeting many stars we will understand how common or unusual our own planetary system may be.

The GPI consortium built an advanced adaptive optics using silicon microchip deformable mirrors to remove atmospheric turbulence, and coronagraphic masks to block the diffracted light from the parent star.

GPI will provide diffraction limited images between 0.9 and 2.4 microns. Bright natural guide stars (I<9.5 mag) are required for optimal performance of the GPI adaptive optics system. The system will be able to see objects ten million times fainter than their parent star at separations of 0.2-1 arcsecond in a 1-2 hour exposure. The science instrument will provide spectroscopy of any object observed. This allows us to detect warm planets (up to one billion years in age) through their infrared light. We can also measure the polarization of light to see faint disks of dust from other solar systems’ comet and asteroid belts.

GPI will produce the first comprehensive survey of giant exoplanets in the region where giant planets exist in our solar system – from 5 to 40 astronomical units radius. Dozens of these exoplanets will be bright enough for high signal-to-noise ratio spectroscopy, moving our studies of extrasolar planets into the realm of detailed astrophysics.


  • Snowed In
  • Detour on the Route to Chile
  • I can spell GPI!
  • Gemini, GPI, and a new friend
  • One Year Anniversary
  • One Year Anniversary, part 2
  • The Gemini Planet Imager Produces Stunning Observations In Its First Year
  • Hello from AAS!
  • Debris Disks: Searching for Dust to Find Planets
  • How GPI Works to See Planets
  • What Self-Luminous Planets are Like
  • What do we know about planet formation?
  • Extreme Solar Systems Featured in Online Press Conference
  • Observing planet formation at close range: Gemini Planet Imager’s view of the TW Hya disk
  • GPIES May 2016 Observing Run: Women in Astronomy